: : :


( )

: ?

, , (). (A. Einstein), , , . " " . , " " [1].

. , , . ( ). ( -- \(\vert\phi\vert\ll c^{2}\)) .

1907 .. (H.D Hilbert) 1915. 1908-10 . (H. Minkowski).

( 2- ) ( ) . , . .

, 1907 ., [2]: 1000 , . , . , , . : . , , . , , . , .

, , . ( ) ( ). , - ( ). , , :

( ) , , "" , .

-.

, () . -
\begin{displaymath}
\frac{d^{2}x^{\mu}}{ds^{2}}+\Gamma ^{\mu}_{\nu \rho}
\frac{dx^{\nu}}{ds}\frac{dx^{\rho}}{ds}=0,
\end{displaymath} (1)

\(ds\) -- , , \(\Gamma ^{\mu}_{\nu \rho}\) (\(\mu\), \(\nu\), \(\rho\) 0 3); \(x^{\mu}\), \(x^{\nu}\), \(x^{\rho}\) -- - \( (x^{0},x^{1},x^{2},x^{3}) \), \((x^{1},x^{2},x^{3})=\vec{r}\) -- , \(x^{0}=ct\) ($c$ -- , $t$ -- ).

- . 0, , \(\vec{a}=0\), \(\vec{a}=\frac{d^{2}\vec{x}}{ds^{2}}\) -- , . .

[4].

. (1), , - $M$ . $g$ :


\begin{displaymath}
g=\frac{GM}{r^{2}\sqrt{1-\frac{2GM}{c^{2}r}}},
\end{displaymath} (2)

$G$ -- , $c$ -- , $r$ -- .

. $g$ , $r$

\begin{displaymath}
r_{g}=\frac{2MG}{c^{2}},
\end{displaymath} (3)

\(r_{g}\) ( \(r_{g\odot}\simeq 3\), \(r_{g\oplus}\simeq 0.9\)). $r_{g}$ .
\begin{displaymath}
V_{2}=\sqrt{\frac{2MG}{r}}.
\end{displaymath} (4)

, $r=r_{g}$ $V_2$ . $m$ , $r_g$, . ( " " 1968 . . (J.A. Wheeler)).

; ( -- " "). , , ( ) .



baldin@inp.nsk.su
1999-05-25