onclusion that all the lengths surrounding us of space can be expressed with any magnitude from 10-n to 10n metres where n can take any significance from 0 to .
   This is an exegesis of universality of space and other forms of existence of Matter as well: from infinity into the depths till infinity into hypersphere.
   In everyday practice people usually use magnitudes from 10-4 m (the thickness of a sheet of paper) to 106 m. But because of our inability to measure distances less 10-30 and more 1030 metres it would be wrong to consider that forms of motion of Matter do not exist in spatial intervals with .
   Directions of motion in space have a purely formal meaning in a philosophical research due to the isotropy of space.

Motion in time. As it is well known any motion in space is tightly linked with the other form of motion of Matter - the motion in time. Any combination of these two motions creates an event.

   The motion in time has the same dual characteristic as motion of material forms in space. Let us look up at a second hand of a watch turning around its axis. Every moment of time it occupies a certain location corresponding to a temporal locality on the coordinate of time. In the next moment it leaves this location, occupying the next one. Together with the tip of a second hand we are steadily moving from one temporal point to another, leaving the former and getting into the next one while the temporal intervals themselves selected by us are equal. Such motion in time should be considered as relative, for temporal intervals successively alternate each other. Their magnitude can be different. For contrasting it is enough to compare the speed of displacement of a point of counting off associated with the end of an hour hand with the speed of a point of counting off associated with the end of a plane's turning propeller. The difference of temporal intervals related to a unit of angular or spatial displacement is obvious.
   As our first example we took an event with duration of one second. But if we take an event with duration of one hour then it is possible to divide its temporal interval into 60 minutes or 3600 seconds. Seconds can be counted starting from the first one into an accumulating total. Although we shall feel ourselves only in the interval of the most recent second the total duration of the event in fact will continue as a sum of all second's intervals starting from the first one. Such summary increase of time during the process of the duration of an event should be related to as absolute motion in time. Consequently after the completion of any event or in its absence, and no absolute motion in time occurs. Due to this fact it is possible to declare that motion in time or growth of time exists only for events combined also with other changes, but for an onlooker always situated in the actual point of count off, the growth of time practically does not happen and it remains constantly as t0. As for the motion in time, an onlooker, i.e. you and me, can judge only by indirect indications, revealing by that his capacity for abstract thinking.
   At present events with different temporal intervals are known: from 10-22 sec. (the duration of one vibration of a proton in a nucleus) to 1018 seconds (a supposed period of existence of the Sun in the form of a star). In everyday practice people use temporal intervals from 10-8 sec. (the time of crossing a room by light) to 109 seconds (the continuance of life of a human being).
   But also as in case with 'space' we can assume that duration of events' intervals can be of any magnitude from 10-n sec. to 10n seconds where n takes any significance from 0 to .
   When speaking about the direction of time's progress and its reversibility we can note the following: if a point of count off of spatial coordinates can be joined with any spot in space and transferred arbitrarily to another spot (following the principle of their equivalent relativity), and any such transference can have a positive symbol, then a point of counting off of the temporal coordinate makes its forward motion only strictly in one direction, measuring off temporal intervals of the development of this or that system or event. Due to this the temporal point of counting off is as if it eats intervals lying ahead of it, changing the symbol of the absolute Time from + to - or vice versa. Hence if we agree the sum of temporal intervals remained till some event to consider with the positive symbol then a point of counting off after a time interval will convert a portion of positive intervals into negative ones. And vice versa, if we agree to consider the duration of development of some process as a sum of positive temporal intervals then intervals not yet added further along the line of the temporal coordinate will be considered as negative and the instantaneous point of count off moving along the coordinate will change the symbol of intervals from - to +. As in our practice we meet this phenomenon constantly we should have clear knowledge about it.

?? Motion in quality. It appears now to be impossible to describe all the diversity of Matter's forms surrounding us only with the motion in space-time. We for sure feel the lack of something else that would unite all phenomena happening continually in the world into a unified chart of its creation and evolution. Such third kind of motion is the motion of Matter in quality that is not cognised, in fact, until now, not yet recognised formally by anyone and is being ignored unfairly by everybody. The Science, disregarding this type of motion of Matter, is incapable even nowadays to submit distinct, full, objective and definite explanations of causality in most events and phenomena, that are going on around us in the Universe.

   But as far back as more than one hundred years ago Leo N. Tolstoj proclaimed that all these phenomena depend at least on three parameters: "To imagine a person," he wrote in his famous philosophical novel War and the Society, "completely free, not being bound by the law of necessity then we should imagine him quite alone out of space, out of time and out of depending on causes" (underlined by L.N. Tolstoj).
   In his Philosophical Notebooks V.I. Lenin later defined that "functionality ... can be a type of causality". And as is well known a function is an outward display of qualitative characteristics of some object in a given system of relationship.
   But the most precise definition of obligatoriness to consider the organisation of constructing Matter through triple motion was given by F. Engels in Dialectics of Nature. "...There are also many qualitative changes to be taken into account," he wrote, "whose dependence on quantitative change is by no means proven. ... Any motion includes mechanical motion, change of place of the largest or smallest portions of matter; to obtain knowledge of this mechanical motion is the first task of science, but only its first task. But this mechanical motion does not exhaust motion as a whole. Motion is not merely a change of place [that is motion in space-time - I.K.], in fields higher than mechanics it is also change of quality." (my emphasis - I.K.).
   Among opinions on this subject of our contemporaries one should note the definition of the Russian academician A.I. Oparin, who characterised "the process of evolution of matter as the way of genesis of new, not existing before qualities" (my emphasis - I.K.). Thus in order to create a full picture of the formation and evolution of the material World it is necessary to observe the motion of material forming in three equivalent philosophical categories: in space - time - quality.
   And indeed, everyone can be easily persuaded in this actuality while just analysing the simplest examples. Let us imagine some close volume of space (), limited for example by a glass capacity. If we start to fill this volume with some gaseous substance, then the motion of gas inside the volume while it's filling during n time will be observed as an absolute motion (, ) of a substance of one quality (gas) in space, occupied with "pregas" substance of another quality. After a temporal interval , the gas will fill the given volume completely and absolute motion in space-time for the given portion of substance of Matter of the assigned qualitative level will terminate. In other words, after the system condition of the given substance of similar quality in a theoretically closed volume of space is balanced, its further absolute motion in space-time does not exercise any more.
   If that can be possible for some part of Matter during some period of time, then the general Evolution of aggregate Matter does not permit the absence of absolute motion in space-time since it is the principal requirement of its actuality. That is why besides the absolute motion in space-time there is also the motion of material forms in quality.
   What should we understand with this?
   According to an ordinary definition quality is a structurally undivided combination of indications, features of some substance or a thing revealed in a system of relations with other substances or things. Quality is the essential determination of substance due to which it is just this substance but not any other one and it makes certain difference with other substances. Hence each qualitative form of Matter has its own definite composition of peculiarities and signs which it reveals while relating with other forms of Matter. But as it is well known an external revealing of qualitative characteristics of an object in a presumed system of relations is its function. That is why with a change of qualitative characteristics of some substance its functional characteristics are changing as well.
   Hence a change in quality or a motion in quality one should consider as motion in functional heterogeneity of substances realised through systemic organisation of material forms.
   At the same time the motion in quality is as tightly linked with the motion in time as the motion in space. Without motion in time it is impossible to imagine qualitative changes, it is an independent variable of the said interrelation. Therefore the motion in quality one should comprehend only as motion in quality-time.
   Equally as with motion in space or time, the motion in quality can be relative or absolute. Changes of functional characteristics of some material formations by comparison with others are the relative motion in quality. Summary accumulation of functional characteristics by all forms of the aggregate Matter is the absolute motion in quality and it is important precisely for philosophical comprehension of dialectical Evolution.
   Functional features of any material formation can be revealed only in a system of relations with other similar elements. A single, isolated material formation cannot reveal its functional peculiarities and be used for material development. Thus the possession of quality or a functional definition dictates to every element the necessity to be included into some system of relations with other material formations, and in the process of those relations its inherent features are realised. Due to this principle the motion of Matter in quality entails a compulsory systemic composition of material forms being at the same time its main reason. All elements of known systemic formations depending on their functional peculiarities make different spatial-temporal displacements during which their peculiarities are revealing. The said displacements strictly correlated with spatial-temporal intervals of absolute motion in space-time are representing functional algorithms while every algorithm is pre-determined by functional characteristics of this or that material formation in a given system of relations.
   The absolute motion in quality constantly adds these or those features to material formations being in that way the reason of appearance of new functional algorithms which in their turn are leading to the organisation of new systemic structures. So the motion of Matter in quality-time determines the permanency of the process of systemic organisation of material forms in that degree in which the quality itself serves as a determinant of systemness of the Evolution of Matter.

Evolution. The three forms of motion of Matter examined by us one can consider at the same time as her unified motion in the three equivalent philosophical categories united by the common attribute belonging to Matter. This unified motion itself regulated by strictly definite rules is directed to provide the existence of Matter itself spread along the objective reality.

   Furthermore, the motion of Matter in three categories ensures not only her existence but it is leading as well to the evolution of her structures' organisation. That is why any modification of structural features of Matter happens as a consequence of motion of her forms in space-time-quality through augmentations along three coordinates: qualitative, temporal and spatial (disintegrated into three components). The general resulting line ultimately would be a tensor of the Evolution of Matter. Thus one can interpret the Evolution of Matter in a simplified manner as a regular appearance of new qualitative features , their stretching in space , for which they need certain time . Without motion of Matter through her forms in quality-space-time neither the evolution nor even her existence is possible:
   a) motion in quality () - is realised by means of the modification of functional characteristics of one system of material spots or localities in comparison with another one. This motion originates qualitative heterogeneity of the Evolution and its systemic organisation;
   b) motion in space () - by means of displacement of one material spot or locality (or a system of spots or localities) relatively another one. By this kind of motion the voluminity of the Evolution is being achieved;
   c) motion in time () - fixes duration of events and is passing from the past through now to the future. By this motion the Evolution's irreversibility is secured.
   All the three forms of motion in the aggregate are dictating the direction of the tensor of Matter's evolution which sense formula is the following:

It is necessary to underline once again that all events of material reality have as their basis an obligatory combination of all three forms of motion. An exclusion from this triune motion of motion in quality () or in space () can be only temporary. In reality there are no events without motion in time. Motion in space can be considered as a derivative from motion in quality which in its turn can be considered as a derivative from motion in time. The motion in time itself is derivative from motion in space as well as from motion in quality. Without both those motions motion in time does not exist.

   An abstraction from one of the forms of motion would give us particular episodes:
   a) in a hypothetically closed space () - "a diagram of evolution ", that is the sequence of qualitative augmentations in time and their duration;
   b) in a hypothetically frizzed time () - "an actual or a historical stop-picture ", that is spatial expansion of qualitative forms at a particular moment of time;
   c) in a hypothetically limited qualitative spectrum () - "the mechanical motion ", that is a displacement of a material spot (or a system of spots) relatively a spot of counting off.
   Any from the above said abstractions can be entirely theoretical or artificial because in the genuine World the motion of Matter is realised in all the three categories generating systemic formations containing two interlinked components as minimum relative each one to the other in space-time. The elements, being united into a unified system and possessing definite functional features, acquire an intrasystemic potential determining the nature of their motion in space-time and regulations of their intrasystemic existence. Any modification of systemic organisation of material formations, its complication and improvement, are real results of the motion in quality-time. Peculiarities of precisely this motion, its driving force and structural mechanics, we shall be examining in the course of our research.

Energy. The description of forms of Matter will not be complete if we do not analyse one more very important philosophical category - energy.

   Energy in the general understanding is a measure of motion of Matter. Another definition characterises it as a function of condition of a system.
   The motion of Matter in quality-space-time is going on not capriciously but complying with the severe law of constancy of the sum total of energy. And if for an inertial material spot moving evenly straightforward the magnitude of energy is simple and equals Ek, then for a system of a great number of spots the quantity of energy will be expressed by the formula:

This formula in a certain way discloses the mechanism and intercausation of all forms of motion of Matter as well as its regulations. Substituting in the formula the expression of value of velocity , we shall receive the regularity of the absolute motion of material forms in space-time. For an uncoordinated multitude of spots the total energy will be:

where mi - a sum of qualitatively similar spots.

   A combination of a number of spots into some stable (that is having a definite temporal interval) system, pre-determining the character of their motion in space-time, originates a kind of a material point of a higher organisational order with its own functional features and with potential energy Epi. Meanwhile Ek of the whole system will decrease and a total energy will be characterized by the detailed formula.
   If the entire sum of a multitude of uncoordinated spots will unite into an integral system constituting a unified material point or a sum of points of a higher order (with obligatory change of their functional characteristics), then a total summary kinetic energy of this multitude of spots of a qualitatively lower order will turn into potential energy of the point-system of a higher organizational order, that is as though the kinetic energy of uncoordinated spots or particles gets completely stuck in a systemic structure they are inserted in, turning into energy of intrasystemic connection.
   And vice versa, during desintegration of a material system of a higher order its potential energy of intrasystemic connection is being transformed into the kinetic energy of a multitude of spots of lower systemic order. As prototypes of described processes can serve reactions of synthesis and desintegration in physics phenomena, association and dissociation - in chemical ones, etc.
   As a whole the energy constant affects most directly both the motion of material forms in space-time and their systemic reorganisation during motion in quality-time. Due to this an isotropic and volumetric space of every preceding systemic organisation of level n appears to be a field of growth of entropy of succeeding qualitative levels of the evolving aggregate Matter in proportion as even temporal intervals are running while a constant sum of energy of the whole Material substance secures a static balance of this Evolution.


[ To Contents ] [ Part II ]

Igor I. Kondrashin - Dialectics of Matter (Part II)

[ To Contents ]

Igor I. Kondrashin

Dialectics of Matter

II. General Theory of Material Systems

Systemness of Matter

All the variety of reality surrounding us is representing qualitatively different forms of Matter developed in space. But location of the forms in space is not accidental, it is pre-determined by the organizational structure of one of the systems into which this or that material spot (or a group of spots) enters as a component.

   Consequently Matter is not an arbitrary piling up of qualitative forms disorderly spread in space and alternating in time. On the contrary, Matter exists in the shape of various types of numerous systemic formations which are very complicated in structure and which are situated in permanent interconnection and interaction, while the order of their organization is strictly regulated by the course of the Evolution of Matter itself through the motion in quality-space-time.
   Each part of any system has definite qualitative features and is performing corresponding functional assignment. The period of functioning of every part of a system is pre-determined by motion along the ordinate of time; displacement in space ensures relative one to another expansion of functional systems' parts; appearance of new qualitative features serves as a factor of further systemformation of Matter. Thus Matter exists not in the form of statically fixed frivolous formations but constitutes a kind of interlinked combination of dynamic systems that constantly and organisationally are transforming and perfecting in accordance with motion in quality-space-time. Seeming staticness of some systemic formations is only a consequence of comparative continuance of their functioning period.
   Depending on their functional maturity, one can separate all systemic formations into:
   1. Forming (originating);
   2. Developing;
   3. Stable;
   4. Dying away;
   5. Dead off;
   while each variety of systems as a rule passes through all the above stated phases of their existence.
   During periods of forming and dying away summary peculiarities of material formations are prevailing in systems based predominantly on motion in space-time. Developing and particularly stable systems have a more integral character that is signified in a precise interconnection of their structures' components by strictly definite actualised functions. Motion in quality-time attaches to these or those components of a system additive characteristic that gradually are increasing objective requirement in this system's reorganisation.
   Now it is possible to separate all systemic diversity of Matter conceptually into a line of organisational levels uniting systemformations of the same type of creation. An alteration of a state of a system of any level characterized by relative displacements of its components in space-time constitutes a functional event. Appearance of new functions as a consequence of motion in quality-time, in proportion as reorganisation of a system is going, determines an evolving process that can be traced through the whole expanse of the Evolution of Matter along the levels of her organisation while the direction of this process is: from summary systems of low level to integral systems of higher level. The whole totality of systemic processes and events pre-determines the motion of the actual point of counting off along the coordinates of quality-space-time and as a result of that the evolution of material substance is being realised.

Functional Cell and Functioning Unit

For better comprehension of the principle of intrasystemic interlink of components of each material formation let us examine peculiarities of the composition of any system. For clarity we shall take a model of a system with the simplest structure.

   For this purpose let us be carried away by thinking into an absolutely 'empty' field of space filled in with a hypothetical uniform 'ether' consisting of a number of material spots. As the given ether has definite space parameters, it means that it constitutes a material substance and is characterised by definite qualitative features described with a strictly defined function, and this function will be the same for any spatial volumes of the given ether due to its similar qualitative feature. Therefore if we move away some part of the ether from the volume of space occupied by it and replace it with another equivalent in spatial magnitude and qualitative characteristic part of the ether from some other field of space then the function of the given spatial volume will remain unchanged due to qualitative uniformity of both mutually replacing portions of the ether, that is to say the general functional background of the given formation will not be transgressed. This feature of material systems is one of the basics.
   That spatial volume from where we have moved away and then where we placed in again a portion of hypothetical ether is designated a functional cell (briefly - fnl. cell) of the structure of the given systemformation and the portion of the ether itself - its functioning unit (fng. unit).
   As from the very beginning we have agreed that the volume of space being examined by us is fully filled with the ether it means that any absolute motion in space-time by the moment of our examination had terminated (). In order to secure further existence of material substance, which is impossible to get without the entire absolute motion, Matter has to make the next step in her own Evolution in the third form of motion - to realise certain displacement along the ordinate of quality ().
   Consequently 'elementary' spots of the ether located in space-time relatively one to another in a definite order start to be re-grouped according to certain regularities, forming structures of concentrations of material spots of another, higher than the structure of the ether, systemic order, and having their own describing function corresponding to their new qualitative characteristics.
   We are not interested yet in the mechanism of systemformation of concentrations but the fact that these accumulations, absorbing a determined part of elementary spots of the ether, have other, different from the initial and characteristic only for them intersystemic structure and motion, is very important for us.
   Now the material spots of the field of space chosen by us are included concurrently into systemic formations of two different organisational levels. At places where the material spots are located in free from newly formed concentrations fields of space, they continue to constitute the initial ether. Conversely, at places where the formation of the material spots into concentrations added new qualitative characteristic to them, fields of space appeared described by a quite different function.
   After all that, if we move away one of the concentrations (fng. unit) from a part of structural space (fnl. cell) and replace it with a sum of material spots equal to it in volume and organised similarly to the system of the ether then such a replacement will not be equivalent due to the difference of functional characteristics of systemic formations of the first and the second levels. For this reason any not equivalent replacement of fng. units always results in corresponding modification of the fnl. background of the given formation. And on the contrary if we, instead of a removed concentration, place into its fnl. cell another of exactly the same concentration of material spots then the functional characteristics of the given part of the system as well as its fnl. background will not change. These regularities of systemformation along with other ones are the basis of the creation of all material systems surrounding us constituting entelehic structures of fnl. cells, each of which incorporates a precise list of definite algorithms. Material formations filling in corresponding fnl. cells in the capacity of fng. units realise during the process of their functioning the required algorithms, ensuring by that the existence of the whole given integral system.
   Fnl. cells in all levels of the organisation of Matter are not static but are originated because of balanced modification of intrasystemic potential now at one place, now at another of spatial-temporal continuance.
   Fng. units permanently drawn by them perform corresponding displacements in space-time. Therefore the motion of Matter in quality-space-time one should consider as perpetual motion of the whole assemblage of fng. units to spatial-temporal location of corresponding fnl. cells because only there with their assistance the realisation of those or other fnl. algorithms can happen, which is actually essential to material substance to ensure its existence and realise this or that phase of its evolution.

Principles of Systemic Formation of Matter

Principle 1 All the motion of Matter in quality comes to systemic differentiation of functions of her formations entailing their systemic-structural integration.

Principle 2 Every material formation has qualitative characteristic typical only of it, described with a strictly definite function and which it reveals in the process of its functioning as part of some system of an organisational level n. Not isolated material formations having fnl. features of the same systemic level enter into an interlink reflecting the process of systemic integration of Matter.

Principle 3 Every material formation constituting an aggregate of interconnected differentiated elements - fng. units structurally combines them into a material system of an organisational level n. Each element - fng. unit of level n is a microsystemic formation of an aggregate of differentiated elements - fng. units of an organisational level n-1 with specific for them functional characteristics. At the same time a steady integral system of level n can constitute a differentiated element - fng. unit of a structure of a macrosystemic formation of a higher organisational level n+1, able to realise corresponding algorithms of a fnl. cell it occupies.

   Thus the whole systemic organisation of material substance divided into different levels has obviously expressed cascaded character and every new integrational phase of differentiation of functions reflects the next stage in turn of the cascaded Evolution of Matter.

Principle 4 Every functional cell differs from another not similar to it fnl. cell by its spectrum of algorithms of functioning that can be realised only with the aid of fng. units filling in cells. That is why a sought for a fng. unit should have the corresponding enumeration of functional potentialities in order to carry out algorithms typical for a given fnl. cell.

Principle 5 A modification of functional features (quality) of any system of level n is a consequence of a modification of its internal structure characterised by the spatial-temporal location of fnl. cells it consists of and their algorithmic interlink. And vice versa, any modification of internal structure of a system of level n entails a modification of its functional features (quality).

Principle 6 Every material formation constituting some fng. unit "a" can reveal its fnl. features only being located into a corresponding to it fnl. cell "A" of a spatial-temporal continuance of a structure of a system of level n. At the same time a system of level n can be considered complete and function normally only on condition that all fnl. cells A, B, C... of its structure will be filled with corresponding fng. units "a", "b", "c"..., through the functioning of which the cells realise functional algorithms characteristic of them.

Principle 7 After replacement in a fnl. cell "A" of a system of level n of some fng. unit "a" to another similar to it fng. unit "a" the functional features of the whole systemic formation will not change. On the contrary, after replacement in a fnl. cell of a system of some fng. unit "a" to a qualitatively different from it fng. unit "b" of the same organisational level n the functional features of the whole given system that is its fnl. background will change accordingly.

   And really if in a molecule of water H2O to move away an included in the composition atom of oxygen from its fnl. cell and instead of it to place there another atom of oxygen then the functional characteristics of the systemic formation - the molecule of water - will not change because of this. If one places an atom of sulphur qualitatively different from the atom of oxygen into the free fnl. cell then the functional features of the given molecule will change since after that it will have the corresponding characteristics of hydrogen sulphide H2S, but not of water.

Principle 8 Every material formation becomes a fng. unit in a fnl. cell of a structure of a system of level n only in the case that it has a stable systemic completeness of a level n-1, being expressed in the presence of a definite spectrum of fnl. features reflecting the functional differentiation of subsystems of a macrosystem. Being in the possession of only a part of systemic fnl. features is forcing the fng. unit to occupy any free fnl. cell corresponding to it in a structure of organisational level n+1 while its autonomous, out of systemic existence becomes practically impossible. Each organised material formation of level n can realise its individual fnl. features only in the process of functioning in the capacity of a fng. unit in one of the fnl. cells corresponding to it of a system of level n+1 but outwardly the complex fnl. features of the whole new systemic formation will be already displayed.

   So atoms of oxygen being possessed of a definite spectrum of fnl. features practically cannot exist in a free condition and have to fill in fnl. cells of molecular structures of, for example, oxygen O2 or ozone O3 or some other chemical compound which includes atoms of oxygen and after that outwardly already the fnl. features of molecules of these compounds are being displayed. Accordingly an atom of oxygen having occupied a fnl. cell in a molecule of water is realising its fnl. features only as a fng. unit of the given systemic formation and its individual characteristic becomes indistinguishable from the spectrum of fnl. features of a system that had absorbed